3260 papers • 126 benchmarks • 313 datasets
This task has no description! Would you like to contribute one?
(Image credit: Papersgraph)
These leaderboards are used to track progress in translation-5
Use these libraries to find translation-5 models and implementations
No subtasks available.
A new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely is proposed, which generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
This work presents an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples, and introduces a cycle consistency loss to push F(G(X)) ≈ X (and vice versa).
It is conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and it is proposed to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.
Conditional adversarial networks are investigated as a general-purpose solution to image-to-image translation problems and it is demonstrated that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
An attention based model that automatically learns to describe the content of images is introduced that can be trained in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound.
This paper presents a generative model based on a deep recurrent architecture that combines recent advances in computer vision and machine translation and that can be used to generate natural sentences describing an image.
This work presents region-based, fully convolutional networks for accurate and efficient object detection, and proposes position-sensitive score maps to address a dilemma between translation-invariance in image classification and translation-variance in object detection.
A simple, fully-convolutional model for real-time instance segmentation that achieves 29.8 mAP on MS COCO at 33.5 fps evaluated on a single Titan Xp, which is significantly faster than any previous competitive approach.
A global approach which always attends to all source words and a local one that only looks at a subset of source words at a time are examined, demonstrating the effectiveness of both approaches on the WMT translation tasks between English and German in both directions.
This paper proposes the weight-dropped LSTM which uses DropConnect on hidden-to-hidden weights as a form of recurrent regularization and introduces NT-ASGD, a variant of the averaged stochastic gradient method, wherein the averaging trigger is determined using a non-monotonic condition as opposed to being tuned by the user.
Adding a benchmark result helps the community track progress.