3260 papers • 126 benchmarks • 313 datasets
Multimodal generation refers to the process of generating outputs that incorporate multiple modalities, such as images, text, and sound. This can be done using deep learning models that are trained on data that includes multiple modalities, allowing the models to generate output that is informed by more than one type of data. For example, a multimodal generation model could be trained to generate captions for images that incorporate both text and visual information. The model could learn to identify objects in the image and generate descriptions of them in natural language, while also taking into account contextual information and the relationships between the objects in the image. Multimodal generation can also be used in other applications, such as generating realistic images from textual descriptions or generating audio descriptions of video content. By combining multiple modalities in this way, multimodal generation models can produce more accurate and comprehensive output, making them useful for a wide range of applications.
(Image credit: Papersgraph)
These leaderboards are used to track progress in multimodal-generation-24
Use these libraries to find multimodal-generation-24 models and implementations
No subtasks available.
Adding a benchmark result helps the community track progress.