3260 papers • 126 benchmarks • 313 datasets
Image registration, also known as image fusion or image matching, is the process of aligning two or more images based on image appearances. Medical Image Registration seeks to find an optimal spatial transformation that best aligns the underlying anatomical structures. Medical Image Registration is used in many clinical applications such as image guidance, motion tracking, segmentation, dose accumulation, image reconstruction and so on. Medical Image Registration is a broad topic which can be grouped from various perspectives. From input image point of view, registration methods can be divided into unimodal, multimodal, interpatient, intra-patient (e.g. same- or different-day) registration. From deformation model point of view, registration methods can be divided in to rigid, affine and deformable methods. From region of interest (ROI) perspective, registration methods can be grouped according to anatomical sites such as brain, lung registration and so on. From image pair dimension perspective, registration methods can be divided into 3D to 3D, 3D to 2D and 2D to 2D/3D. Source: Deep Learning in Medical Image Registration: A Review
(Image credit: Papersgraph)
These leaderboards are used to track progress in medical-image-registration-15
Use these libraries to find medical-image-registration-15 models and implementations
Adding a benchmark result helps the community track progress.