3260 papers • 126 benchmarks • 313 datasets
Image Segmentation is a computer vision task that involves dividing an image into multiple segments or regions, each of which corresponds to a different object or part of an object. The goal of image segmentation is to assign a unique label or category to each pixel in the image, so that pixels with similar attributes are grouped together.
(Image credit: Papersgraph)
These leaderboards are used to track progress in image-segmentation-1
Use these libraries to find image-segmentation-1 models and implementations
It is shown that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
A new mobile architecture, MobileNetV2, is described that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes and allows decoupling of the input/output domains from the expressiveness of the transformation.
This work extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries and applies the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network.
The proposed `DeepLabv3' system significantly improves over the previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2012 semantic image segmentation benchmark.
Quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures, including FCN and DeconvNet.
This work addresses the task of semantic image segmentation with Deep Learning and proposes atrous spatial pyramid pooling (ASPP), which is proposed to robustly segment objects at multiple scales, and improves the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models.
A novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes is proposed to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs).
This paper presents UNet++, a new, more powerful architecture for medical image segmentation where the encoder and decoder sub-networks are connected through a series of nested, dense skip pathways, and argues that the optimizer would deal with an easier learning task when the feature maps from the decoder and encoder networks are semantically similar.
This work proposes an approach to 3D image segmentation based on a volumetric, fully convolutional, neural network, trained end-to-end on MRI volumes depicting prostate, and learns to predict segmentation for the whole volume at once.
This paper introduces fast segmentation convolutional neural network (Fast-SCNN), an above real-time semantic segmentation model on high resolution image data suited to efficient computation on embedded devices with low memory.
Adding a benchmark result helps the community track progress.