The constructed PPR10K dataset provides a good bench-mark for studying automatic PPR methods, and experiments demonstrate that the proposed learning strategies are effective to improve the retouching performance.
Different from general photo retouching tasks, portrait photo retouching (PPR), which aims to enhance the visual quality of a collection of flat-looking portrait photos, has its special and practical requirements such as human-region priority (HRP) and group-level consistency (GLC). HRP requires that more attention should be paid to human regions, while GLC requires that a group of portrait photos should be retouched to a consistent tone. Models trained on existing general photo retouching datasets, however, can hardly meet these requirements of PPR. To facilitate the research on this high-frequency task, we construct a largescale PPR dataset, namely PPR10K, which is the first of its kind to our best knowledge. PPR10K contains 1, 681 groups and 11, 161 high-quality raw portrait photos in total. High-resolution segmentation masks of human regions are provided. Each raw photo is retouched by three experts, while they elaborately adjust each group of photos to have consistent tones. We define a set of objective measures to evaluate the performance of PPR and propose strategies to learn PPR models with good HRP and GLC performance. The constructed PPR10K dataset provides a good bench-mark for studying automatic PPR methods, and experiments demonstrate that the proposed learning strategies are effective to improve the retouching performance. Datasets and codes are available: https://github.com/csjliang/PPR10K.
Xuansong Xie
6 papers
Lei Zhang
8 papers