A data augmentation strategy is proposed which utilizes multiple low-pass filters during training and leads to improved generalization to unseen filtering conditions at test time, which results in a lower SNR than the band-limited input.
In this paper, we address a subtopic of the broad domain of audio enhancement, namely musical audio bandwidth extension. We formulate the bandwidth extension problem using deep neural networks, where a band-limited signal is provided as input to the network, with the goal of reconstructing a full-bandwidth output. Our main contribution centers on the impact of the choice of low-pass filter when training and subsequently testing the network. For two different state-of-the-art deep architectures, ResNet and U-Net, we demonstrate that when the training and testing filters are matched, improvements in signal-to-noise ratio (SNR) of up to 7 dB can be obtained. However, when these filters differ, the improvement falls considerably and under some training conditions results in a lower SNR than the band-limited input. To circumvent this apparent overfitting to filter shape, we propose a data augmentation strategy which utilizes multiple low-pass filters during training and leads to improved generalization to unseen filtering conditions at test time.