A drug recommendation system ASGARD, which predicts drugs by considering cell clusters to address the intercellular heterogeneity within each patient, is proposed, which shows significantly better average accuracy on single-drug therapy compared to two bulk-cell-based drug repurposing methods.
Single-cell RNA sequencing technology has enabled in-depth analysis of intercellular heterogeneity in various diseases. However, its full potential for precision medicine has yet to be reached. Towards this, we propose A Single-cell Guided Pipeline to Aid Repurposing of Drugs (ASGARD) that defines a drug score to recommend drugs by considering all cell clusters to address the intercellular heterogeneity within each patient. ASGARD shows significantly better average accuracy on single-drug therapy compared to two bulk-cell-based drug repurposing methods. We also demonstrated that it performs considerably better than other cell cluster-level predicting methods. In addition, we validate ASGARD using the drug response prediction method TRANSACT with Triple-Negative-Breast-Cancer patient samples. We find that many top-ranked drugs are either approved by the Food and Drug Administration or in clinical trials treating corresponding diseases. In conclusion, ASGARD is a promising drug repurposing recommendation tool guided by single-cell RNA-seq for personalized medicine. ASGARD is free for educational use at https://github.com/lanagarmire/ASGARD . The full potential of single-cell RNA-sequencing applied to precision medicine has yet to be reached. Here, we propose a drug recommendation system ASGARD, which predicts drugs by considering cell clusters to address the intercellular heterogeneity within each patient.
Haodong Liang
1 papers
Qianhui Huang
1 papers
Yijun Li
1 papers
D. Garmire
1 papers
Duxin Sun
1 papers
L. Garmire
1 papers