A novel federated deep learning scheme, named DeepFed, to detect cyber threats against industrial CPSs is proposed, and a Paillier cryptosystem-based secure communication protocol is crafted to preserve the security and privacy of model parameters through the training process.
The rapid convergence of legacy industrial infrastructures with intelligent networking and computing technologies (e.g., 5G, software-defined networking, and artificial intelligence), have dramatically increased the attack surface of industrial cyber–physical systems (CPSs). However, withstanding cyber threats to such large-scale, complex, and heterogeneous industrial CPSs has been extremely challenging, due to the insufficiency of high-quality attack examples. In this article, we propose a novel federated deep learning scheme, named DeepFed, to detect cyber threats against industrial CPSs. Specifically, we first design a new deep learning-based intrusion detection model for industrial CPSs, by making use of a convolutional neural network and a gated recurrent unit. Second, we develop a federated learning framework, allowing multiple industrial CPSs to collectively build a comprehensive intrusion detection model in a privacy-preserving way. Further, a Paillier cryptosystem-based secure communication protocol is crafted to preserve the security and privacy of model parameters through the training process. Extensive experiments on a real industrial CPS dataset demonstrate the high effectiveness of the proposed DeepFed scheme in detecting various types of cyber threats to industrial CPSs and the superiorities over state-of-the-art schemes.
Rongxing Lu
1 Paper